26,223 research outputs found

    On the spectrum of Farey and Gauss maps

    Full text link
    In this paper we introduce Hilbert spaces of holomorphic functions given by generalized Borel and Laplace transforms which are left invariant by the transfer operators of the Farey map and its induced version, the Gauss map, respectively. By means of a suitable operator-valued power series we are able to study simultaneously the spectrum of both these operators along with the analytic properties of the associated dynamical zeta functions.Comment: 23 page

    Evidence for a Galactic gamma ray halo

    Get PDF
    We present quantitative statistical evidence for a Îł\gamma-ray emission halo surrounding the Galaxy. Maps of the emission are derived. EGRET data were analyzed in a wavelet-based non-parametric hypothesis testing framework, using a model of expected diffuse (Galactic + isotropic) emission as a null hypothesis. The results show a statistically significant large scale halo surrounding the center of the Milky Way as seen from Earth. The halo flux at high latitudes is somewhat smaller than the isotropic gamma-ray flux at the same energy, though of the same order (O(10^(-7)--10^(-6)) ph/cm^2/s/sr above 1 GeV).Comment: Final version accepted for publication in New Astronomy. Some additional results/discussion included, along with entirely revised figures. 19 pages, 15 figures, AASTeX. Better quality figs (PS and JPEG) are available at http://tigre.ucr.edu/halo/paper.htm

    Time-Dependent Models for Dark Matter at the Galactic Center

    Get PDF
    The prospects of indirect detection of dark matter at the galactic center depend sensitively on the mass profile within the inner parsec. We calculate the distribution of dark matter on sub-parsec scales by integrating the time-dependent Fokker-Planck equation, including the effects of self-annihilations, scattering of dark matter particles by stars, and capture in the supermassive black hole. We consider a variety of initial dark matter distributions, including models with very high densities ("spikes") near the black hole, and models with "adiabatic compression" of the baryons. The annihilation signal after 10 Gyr is found to be substantially reduced from its initial value, but in dark matter models with an initial spike, order-of-magnitude enhancements can persist compared with the rate in spike-free models, with important implications for indirect dark matter searches with GLAST and Air Cherenkov Telescopes like HESS and CANGAROO.Comment: Four page

    Decoupling of Mechanical Structures with Piezoceramic Stacks

    Get PDF
    A review of the development and realisation of an adaptive interface for decoupling of two mechanical systems is presented. An approach is utilized to design an adaptronical system by means of rapid-prototyping on the basis of a simulation. The method includes the calculation of the dynamic behaviour of the mechanical structure with the help of FEM. The FE-model of the mechanical structure is reduced and embedded as modal state-space-model with the numerical simulation software MATLAB/ Simulink. Actuators and sensors are integrated into the mechanical structure. Based on the resulting dynamical behaviour of the mechanical structure an adaptive control algorithm for the decoupling of structural vibrations is developed. Experimental tests are performed to confirm and to update the simulations. The hardware-in-the-loop-simulation is performed with the commercial rapid-prototyping dSpace-system. This procedure allows the development and the evaluation of more complex adaptive mechanical structures

    Eclipsing Binaries Showing Light Time Effect

    Full text link
    Four eclipsing binaries, which show apparent changes of period, have been studied with respect to a possible presence of the light time effect. With a least squares method we calculated new light elements of these systems, the mass function of the predicted third body, and its minimum mass. We discuss the probability of the presence of such bodies in terms of mass function, changes in radial velocity and third light in solution of light curves.Comment: 4 pages, 4 figures, 1 table, conference proceeding

    GeoZui3D: Data Fusion for Interpreting Oceanographic Data

    Get PDF
    GeoZui3D stands for Geographic Zooming User Interface. It is a new visualization software system designed for interpreting multiple sources of 3D data. The system supports gridded terrain models, triangular meshes, curtain plots, and a number of other display objects. A novel center of workspace interaction method unifies a number of aspects of the interface. It creates a simple viewpoint control method, it helps link multiple views, and is ideal for stereoscopic viewing. GeoZui3D has a number of features to support real-time input. Through a CORBA interface external entities can influence the position and state of objects in the display. Extra windows can be attached to moving objects allowing for their position and data to be monitored. We describe the application of this system for heterogeneous data fusion, for multibeam QC and for ROV/AUV monitoring

    Heterogeneous Dynamics of Coarsening Systems

    Get PDF
    We show by means of experiments, theory and simulations, that the slow dynamics of coarsening systems displays dynamic heterogeneity similar to that observed in glass-forming systems. We measure dynamic heterogeneity via novel multi-point functions which quantify the emergence of dynamic, as opposed to static, correlations of fluctuations. Experiments are performed on a coarsening foam using Time Resolved Correlation, a recently introduced light scattering method. Theoretically we study the Ising model, and present exact results in one dimension, and numerical results in two dimensions. For all systems the same dynamic scaling of fluctuations with domain size is observed.Comment: Minor changes; to be published in Phys. Rev. Let

    Microfield distributions in strongly coupled two-component plasmas

    Full text link
    The electric microfield distribution at charged particles is studied for two-component electron-ion plasmas using molecular dynamics simulation and theoretical models. The particles are treated within classical statistical mechanics using an electron-ion Coulomb potential regularized at distances less than the de Broglie length to take into account the quantum-diffraction effects. The potential-of-mean-force (PMF) approximation is deduced from a canonical ensemble formulation. The resulting probability density of the electric microfield satisfies exactly the second-moment sum rule without the use of adjustable parameters. The correlation functions between the charged radiator and the plasma ions and electrons are calculated using molecular dynamics simulations and the hypernetted-chain approximation for a two-component plasma. It is shown that the agreement between the theoretical models for the microfield distributions and the simulations is quite good in general.Comment: 18 figures. Submitted to Phys. Rev.
    • …
    corecore